

Lecture 14

Perturbations in Inflation

- Review

- Free scalar field in Minkowski
- Free scalar field in de Sitter
- Inflationary perturbations

GR 13.1

1609.00716

• Review

→ Routhian perturbations \rightarrow CMB

$$\rightarrow \Phi \sim 6 \Phi_i \cos k_s k \gamma$$

$$\langle \Phi_{k_1}^i, \Phi_{k_2}^i \rangle = \delta(\vec{k_1} - \vec{k_2}) P_{|k|}$$

$$P(k) \sim 10^{-10} \left(\frac{k_s}{k} \right)^{3 + (n_s - 1)}$$

→ Inflation at the background level:

$$\epsilon = \frac{M_{\text{Pl}}^2}{16\pi} \left(\frac{V'}{V} \right)^2 \quad \gamma = \frac{M_{\text{Pl}}^2}{8\pi} \frac{V''}{V}$$

take $V = \frac{m^2}{2} \phi^2$, conditions:

$$\frac{M_{\text{Pl}}^2}{\phi^2} \ll 1$$

$$\frac{M_{\text{Pl}}^2}{\phi^2} \ll 1$$

$$m^2 \phi^2 \ll M_{\text{Pl}}^2$$

- We will show that quantum mechanics creates classical perturbations that naturally have the properties required by observations. Essentially, these are ground-state fluctuations of a (free) massless scalar field.

Free scalar field in Minkowski

$$S_\varphi = -\frac{1}{2} \int d^4x \gamma^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi$$

$$E = H = \frac{1}{2} \int d^3x \left(\dot{\varphi}^2 + (\partial_i \varphi)^2 \right)$$

This is just an infinite set of harmonic oscillators

$$\varphi(x, t) = \int \frac{d^3 q}{(2\pi)^{3/2} \sqrt{2\omega_q}} (e^{i\omega_q t - i\vec{q} \cdot \vec{x}} A_q^+ + e^{-i\omega_q t + i\vec{q} \cdot \vec{x}} A_q^-)$$

$$\omega_q = |\vec{q}|$$

$$[A_q, A_{q'}^+] = \delta^3(q - q')$$

$$H = \int d^3 q \omega_q A_q^+ A_q^-$$

c.q. harmonische Oszillatoren

$$H = \frac{P^2}{2m} + \frac{1}{2} m \omega^2 x^2 \quad x \approx \frac{a + a^+}{\sqrt{\omega}}$$

$$a = \sqrt{\frac{m\omega}{2}} \left(x + \frac{iP}{m\omega} \right) \quad a^+ = \sqrt{\frac{m\omega}{2}} \left(x - \frac{iP}{m\omega} \right)$$

$$H = \omega a a^+ \quad [a, a^+] = 1$$

As is well known, in the ground state

$$\langle x \rangle = 0 \quad \langle x^2 \rangle = \frac{1}{m\omega}$$

$$\langle \ell_q \ell_{q'} \rangle = \delta^3(q+q') \frac{1}{\omega} = \delta^3(q+q') \frac{1}{|q'|}$$

Since we often need to integrate

$$\int d^3q P(q) \quad \text{often} \quad q^3 P_q \text{ is used}$$

Inflationary perturbations

- In order to develop the full theory of inflationary perturbations we need to

→ repeat the steps of classical theory of perturbations
(fix the gauge, S-U-T decomposition,

etc. go to inflationary theory)

→ quantize the corresponding fields

- We will do a simplified treatment and ignore the metric perturbations, quantizing just the perturbations of the inflation field.
- Turns out, for scalar perturbations it gives the right answer to leading order in slow-roll parameters (ϵ, η)
- There is no conceptual difficulty in putting together the two steps, but technically is a bit complicated
- Inflation field perturbations:

$$\phi(x, t) = \phi_{\text{cl}}(t) + \varphi \quad \text{small } \sim \eta$$

$$S_\varphi = \frac{1}{2} \int d^4x \sqrt{g} (-g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - v'(\varphi) \varphi^2)$$

(We did it at the level of EOM,
But can also be done for the
action)

$$\ddot{\varphi} + 3H\dot{\varphi} - \frac{1}{a^2} \partial_i \partial_i \varphi \text{ in FRW time}$$

or in conformal time

$$\varphi'' + 2 \frac{a'}{a} \varphi' - \Delta \varphi = 0$$

$$\sim \frac{1}{|\gamma|} k \quad \sim k^2$$

$$\left| \frac{1}{\gamma} \right| k \gg k^2 \quad |\gamma k| \ll 1 \rightarrow \text{outside horizon}$$

$$|\gamma k| \gg 1 \rightarrow \text{inside horizon}$$

$$+ \nearrow \Rightarrow |\gamma| \nearrow$$

$$+ \rightarrow -\infty \Rightarrow |\gamma| \rightarrow \infty \Rightarrow$$

$$\varphi'' - \Delta \varphi = 0 \Rightarrow$$

same as

in flat space \sim expect ground state oscillations.

define

$$x = a(y) \varphi, \text{ then}$$

$$S_x = \frac{1}{2} \int d^3x dy \left[x'^2 - (\partial_i x)^2 + \frac{a''}{a} x^2 \right]$$

harmonic oscillators with time-dependent frequencies!

Fourier transform and quantizes?

$$x(x, y) = \int \frac{d^3 k}{(2\pi)^2 \sqrt{2k}} \left(e^{-ikx} x_k^+(y) A_k^+ + \right.$$

$$\left. + e^{ikx} x_k^{(-)}(y) A_k^- \right)$$

$$[A_k, A_{k'}^+] = \delta(\vec{k} - \vec{k}')$$

what are the functions $\chi^\pm(y)$?

in flat space we had $e^{\pm i\omega y}$.

it's just solution of EOM: $\ddot{\phi} = \omega^2 \phi$

- Let's use de Sitter approximation:

$$a(y) = \frac{1}{y/H}$$

Then classical EOM for χ_k is

$$\ddot{\chi}_k^{cl} - \frac{\omega^2}{H^2} \chi_k^{cl} + k^2 \chi_k^{cl} = 0$$

Quantum operator $\hat{\chi}_k$ satisfies the same equation (it's just time-dependent-frequency harmonic oscillator)

$$\hat{p} = [H, \hat{x}] = \omega \hat{x}, \quad \dot{\hat{x}} = [H, \hat{p}] = \hat{p}$$

$$\chi^\pm = e^{\pm i k \eta} \left(1 \pm \frac{i}{k \eta} \right)$$

two solutions of classical EOM,

we pick them by matching to

flat space results in $k\eta \rightarrow \infty$ limit
(very similar logic to Lecture 12 in
the classical case)

Now, in the super-horizon region
we get

$$\langle \varphi(k) \varphi(k') \rangle \sim \delta^3(k - k') .$$

$$\begin{aligned} & \cdot a^2(\eta) \frac{1}{|k\eta|} \frac{1}{2} \cdot \frac{1}{R} = \\ & = \delta^3(k - k') \frac{H^2}{k^3} \quad k\eta \ll 1 \end{aligned}$$

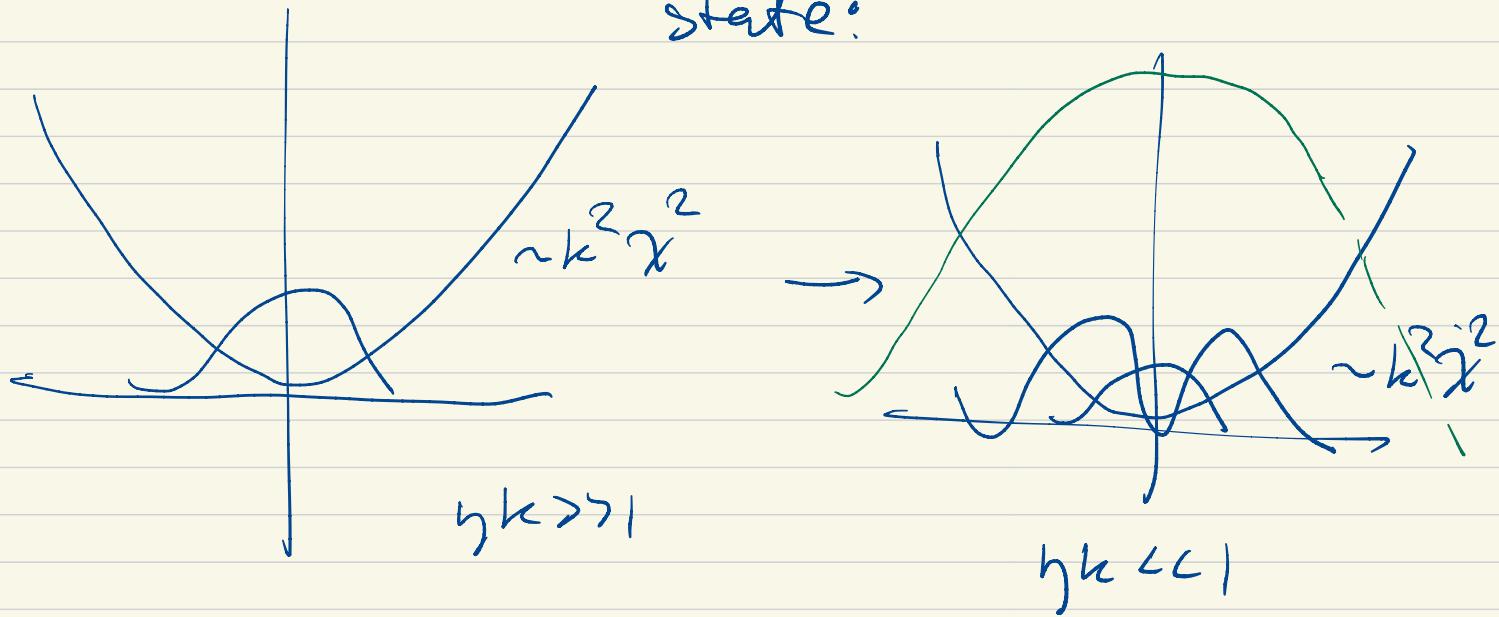
vs $\delta^3(k - k') \frac{1}{k}$ in flat space

This is the famous scale-invariant power-spectrum!

$$d^3 k \frac{1}{k^3} \approx \text{const}, \quad \langle \varphi(x) \varphi(y) \rangle \sim \log(x-y)$$

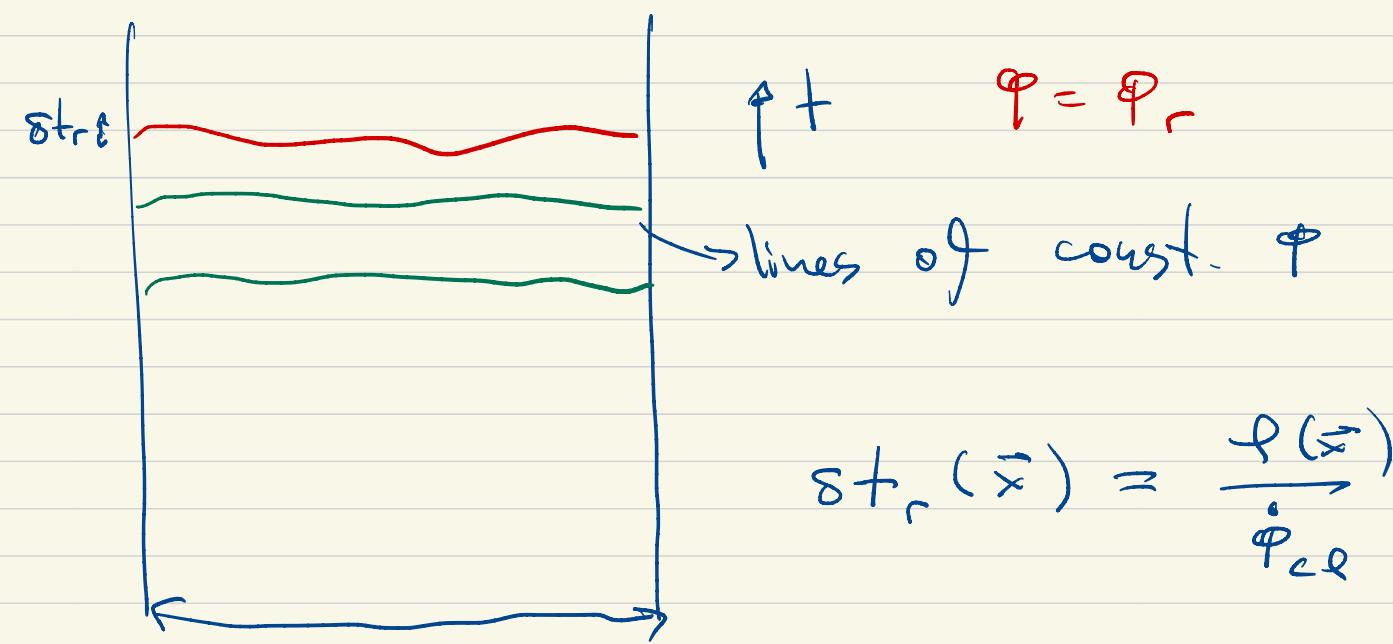
- So far we computed perturbations of φ . (We did an "exact" QM computation). In fact, superhorizon modes are classical.

$\frac{1}{(k\eta)^2} \frac{1}{k} \gg \frac{1}{k} \sim \chi_k$ oscillator is in a very highly occupied state:



High occupation numbers \sim classical state.

- We derived the spectrum of $\varphi = \delta\varphi$, how do we transform it into $\Phi_i(k) - ?$
- Inflation always ends when $\varphi = \varphi_{cl} + \varphi = \varphi_r$ this happens at different times in different parts of the universe:



$$st_r(\vec{x}) = \frac{\varphi(\vec{x})}{\dot{\varphi}_{cl}}$$

$$\text{gr. potential } a = e^{Ht} \Rightarrow$$

$$\frac{\delta a}{a} \Big|_{t_r} \approx \Phi_i = \frac{H e(\vec{x})}{\dot{\varphi}_{cl}} \rightarrow \text{inflation (not same letter)}$$

$$\dot{\Phi}_{\text{cl}} = \sqrt{V \Sigma} \approx H M_{\text{pl}} \sqrt{\Sigma}$$

Φ_i is a classical "random" variable which expectation value is determined by QM (as always in the measurement)

$$\langle \Phi_i \Phi_i \rangle = \frac{H^2}{\Sigma M_{\text{pl}}^2} \langle \ell \ell \rangle =$$

average over k

$$= \frac{H^2}{\Sigma M_{\text{pl}}^2} \frac{1}{k^3} \delta^3(\vec{k} - \vec{k}')$$

$$\frac{H^2}{\Sigma M_{\text{pl}}^2} \approx 10^{-10} \quad \text{to match observations}$$

$H \ll M_{\text{pl}} \rightarrow$ good, quantum gravity can be ignored

But scale of inflation is not yet fixed.

- Importantly, we have a constraint on ε and γ : slow-roll corrections produce a tilt in the power spectrum: $H = H(+)$:

$$P(k) \simeq \frac{1}{k^3 + 1 - n_s}$$

$$n_s - 1 = 2\gamma - 6\varepsilon$$

$$n_s = 0.965 \pm 0.004 < 1 !$$

natural $\varepsilon, \gamma \sim 10^{-2}$: slow-roll approximation is good

- We did not talk about

→ Non-gaussianities

→ tensor modes (gravity waves from inflation)